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1 System Poles and Zeros

The transfer function provides a basis for determining important system response characteristics
without solving the complete differential equation. As defined, the transfer function is a rational
function in the complex variable s = o + jw, that is

bs™ + b _18m_1 + ...+ bis+ by
AnS® + Qn_18" 1 k.. L a3+ ag

H(s) = (1)

It is often convenient to factor the polynomials in the numerator and denominator, and to write
the transfer function in terms of those factors:

_N(s) L (s—z1)(8—22)...(5 — Zm-1)(5 — 2m)
H(S> 7 D(S) B (3 _pl)es _pQ) Sty (3 _pn—l)(s _pn) , (2)

where the numerator and denominator polynomials, N(s) and D(s), have real coefficients defined
by the system’s differential equation and K = b,,/a,. As written in Eq. (2) the z;’s are the roots
of the equation

N(s) =0, (3)

and are defined to be the system zeros, and the p;’s are the roots of the equation
D(s) =0, (4)

and are defined to be the system poles. In Eq. (2) the factors in the numerator and denominator
are written so that when s = z; the numerator N(s) = 0 and the transfer function vanishes, that is
Sli’n;i i (5) =30
and similarly when s = p; the denominator polynomial D(s) = 0 and the value of the transfer
function becomes unbounded,
lim “Ff(a) —="60.
5—p;
All of the coefficients of polynomials N(s) and D(s) are real, therefore the poles and zeros must
be either purely real, or appear in complex conjugate pairs. In general for the poles, either p; = o,
or else p;, piy1 = 03+ jw;. The existence of a single complex pole without a corresponding conjugate
pole would generate complex coefficients in the polynomial D(s). Similarly, the system zeros are
either real or appear in complex conjugate pairs. :

A 3(s)
X — pole
Lo s-plane
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& 5 —> N(s)
2 h
Xm0

Figure 1: The pole-zero plot for a typical third-order system with one real pole and a complex
conjugate pole pair, and a single real zero. '
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Figure 4: Definition of the parameters w, and ¢ for an underdamped, second-order system from
the complex conjugate pole locations. '

The pole locations of the classical second-order homogeneous system
dzy cotdy 2
—d? +2gwnE+ wpy = 0, ‘ (13)

described in Section 9.3 are given by

P1,02 = —Cwn T wy \/ 62 =l (14)

If ¢ > 1, corresponding to an overdamped system, the two poles are real and lie in the left-half
plane. For an underdamped system, 0 < ¢ < 1, the poles form a complex conjugate pair,

P1,p2 = —Qup £ jwny/1 — (2 (15)

and are located in the left-half plane, as shown in Fig. 4. From this figure it can be seen that the
poles lie at a distance wy, from the origin, and at an angle +cos™1(¢) from the negative real axis.
The poles for an underdamped second-order system therefore lie on a semi-circle with a radius
defined by wy, at an angle defined by the value of the damping ratio ¢.

1.3 System Stability

The stability of a linear system may be determined directly from its transfer function. An nth order
linear system is asymptotically stable only if all of the components in the homogeneous response
from a finite set of initial conditions decay to zero as time increases, or

n

1 .ohit -
tli)rgoz'zzl(}’,e 0. | (16)

where the p; are the system poles. In a stable system all components of the homogeneous response
must decay to zero as time increases. If any pole has a positive real part there is a component in
the output that increases without bound, causing the system to be unstable.

B e e

In order for a linear system to be stable, all of its poles must lll'ave nega}t)ive reall Part.s,
that is they must all lie within the left-half of the s-plane. An “unstable” pole, lying in

the right half of the s-plane, generates a component in the system homogeneous response

t bound from any finite initial conditions. A system having one

that increases withou ing oscillatory

or more poles lying on the imaginary axis of the s-plane has non-decay

components in its homogeneous response, and is defined to be marginally stable.
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Figure 2: The specification of the form of components of the homogeneous response from the system
pole locations on the pole-zero plot.

The transfer function poles are the roots of the characteristic equation, and also the
eigenvalues of the system A matrix.

The homogeneous response may therefore be written -
e
yn(t) = D Cielt. (11)
i=1

The location of the poles in the s-plane therefore define the n components in the homogeneous
response as described below: :

1. Areal pole p; = —0 in the left-half of the s-plane defines an exponentially decaying component
. Ce™7%, in the homogeneous response. The rate of the decay is determined by the pole
location; poles far from the origin in the left-half plane correspond to components that decay
rapidly, while poles near the origin correspond to slowly decaying components.

2. A pole at the origin p; = 0 defines a component that is constant in amplitude and defined by
the initial conditions.

3. A real pole in the right-half plane corresponds to an exponentially increasing component Ce’*
in the homogeneous response; thus defining the system to be unstable.

4. A complex conjugate pole pair ¢ + jw in the left-half of the s-plane combine to generate a
response component that is a decaying sinusoid of the form Ae“!sin (wt + ¢) where A and
¢ are determined by the initial conditions. The rate of decay is specified by o; the frequency
of oscillation is determined by w.

5. An imaginary pole pair, that is a pole pair lying on the imaginary axis, +jw generates an
oscillatory component with a constant amplitude determined by the initial conditions.
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